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We developed an algorithm to estimate evapotranspiration (ET) from dense vegetation covered area from
the first principle of surface energy balance model by using satellite retrieved Microwave Emissivity Dif-
ference Vegetation Index (EDVI). This algorithm can be used under both clear sky and cloudy sky conditions.
Long term seasonal trend of EDVI is linked to variance of canopy resistance due to the interrelationship among
leaf development, environmental condition and microwave radiation. Short term changes of EDVI caused by
synoptic scale weather variations is used to parameterize the responds of vegetation resistance to the quick
changes of environmental factors including water vapor deficit, water potential and others. The performance
of this algorithm was test at the Harvard forest site by using satellite measurements from the SSM/I F13 and
F14 sensors. Validation at the site with 169 samples shows that the correlation coefficient (R?) between
estimated and observed ETs is 0.83 with a mean bias of 3.31 Wm ™2 and a standard deviation of 79.63 Wm ™2,
The overall uncertainty of our ET retrieval is ~30%, which is within the uncertainty of current ground based
ET measurements. Furthermore, the estimated ET in different local times (up to 4 times per day) successfully
captured the diurnal cycle of ET. It is the first time that the diurnal variations of vegetation-atmosphere
interactions were directly monitored from space. This study demonstrates that the technique reported here
extends the current satellite capability of vegetation property and ET flux remote sensing from daytime, clear-
sky conditions to day and night times and from intermediate leaf area index (LAI) to all range of vegetation

states.

Published by Elsevier Inc.

1. Introduction

An accurate depiction of evapotranspiration (ET) and photosynth-
esis processes is essential in the understanding of the response and
influence of the vegetation system to water, energy, and carbon cycles
of the climate (Huntingford et al., 2005; O'Brien, 1996; Shukla &
Mintz, 1982; Shukla et al., 1990; Wang et al., 2009; Zeng et al., 1999),
which requires monitoring vegetation-atmosphere interactions in all
weather conditions. ET (or land surface latent heat) processes are
associated with many complicated physical and biological phenomena
such as turbulence, energy, moisture, and vegetation state. Land sur-
face and meteorological conditions determine the partitioning of
surface available energy to the sensible heat flux and latent heat flux.
Consequently, these land surface fluxes influence the timing and
evolution of cumulus convection, in particular, the cloud base height
and depth as well as convective available potential energy. Thus, a
feedback loop is formed in the atmospheric-terrestrial system in terms
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of water and energy cycles even at very short temporal and small
spatial scales.

Although clouds are intrinsically linked to climate variability, their
effect on surface-atmosphere exchange on long temporal (inter-annual)
and large spatial (regional to global) scales has received relatively little
attention. Because of enhanced ET and carbon uptake under moderate
cloudy skies, an understanding of vegetation-atmosphere feedback
for all weather conditions is critical (Min, 2005; Min & Wang, 2008).
Furthermore, the wide spectra of spatial and temporal scales of the
climate system and inherent heterogeneity of the biosphere require the
use of remote sensing techniques to study and monitor surface/canopy
states, their related atmospheric and environmental change processes,
and the effects of variations in vegetation on large scale atmospheric
dynamics and thermodynamics.

Ground-based flux towers provide relatively accurate “point” mea-
surements of ET. However, to project these measurements to larger
landscape area will certainly introduce large errors. Satellite remote
sensing is the most feasible way to solve this problem. Existing sat-
ellite remote sensing techniques for ET estimations are mainly based
on measurements at visible and near-infrared wavelengths, such as
normalized difference vegetation index (NDVI), enhanced vegetation
index (EVI) and Normalized Difference Water Index (NDWI)—spectral
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measurements that are correlated to the absorbed fraction of pho-
tosynthetically active radiation (PAR) and water. Nishida et al. (2003)
developed a potentially-operational ET estimation algorithm based on
surface energy balance (SEB) model of two surface types (bare soil
and vegetation). NDVI derived from MODIS was used to determine
the partition of vegetated area. However, these optical vegetation
indexes have some limitations: 1) low temporal resolution caused by
high sensitivity to clouds and aerosols and unable to provide
information under cloudy conditions; and 2) saturation at inter-
mediate values of leaf area index (LAI) (Asrar et al., 1984; Granger,
2000; Gutman, 1999; Myneni et al., 1995; Sellers, 1985). Because of
the rapid change of vegetation state during spring onset and fall
senescence, these indexes cannot accurately capture the transitions of
vegetation states during growing seasons. In some regions where
cloud covers are high, for example in Amazon Basin, these indexes are
inadequate to provide information of the structure and function of
terrestrial ecosystems, particularly in rainy seasons. Thus, there are
considerable gaps in the understanding of feedback mechanisms
associated with atmosphere-terrestrial ecosystem exchange and
hydrological cycle.

To overcome the above limitations, Min and Lin (2006a,b) have
developed a novel technique that links vegetation properties and ET
with an “Emissivity Difference Vegetation Index” (EDVI), defined as
the microwave land surface emissivity (MLSE) differences between
two wavelengths. These EDVI values are derived from a combination of
satellite microwave measurements and visible and infrared observa-
tions. This technique is applicable under all-weather conditions for
monitoring vegetation biomass and ecosystem exchange processes,
particularly under cloudy conditions favorable to surface-atmosphere
exchange. By combining EDVI measurements with classic satellite
indexes of vegetation at visible and near-infrared wavelengths, con-
tinuous daily global operational measurements of canopy properties
will be possible. Min and Lin (2006a) have demonstrated there is a
good correlation between the measure ET fraction and EDVL. In this
study, we develop a quantitative algorithm to estimate evaporation
fraction (EF, the ratio of ET to available energy) and ET by using the
high temporal resolution of EDVI and validate the retrievals with tower
measurements at the Harvard forest site.

2. Measurements and retrieval algorithm of ET

The Harvard Forest Environmental Monitoring Station (EMS) is
located in north central Massachusetts (42.54 °N, 78.18 °W). The forest
is 50-70 years old and contains a mixture of red oak, red maple, and
hemlock with an average tree height of 24 m. Since the coverage of
forest at Harvard Forest is very high and fairly homogeneous during
grown seasons, it is reasonable to assume that the ET is mainly
contributed by vegetation and to neglect the evaporation from soil
moisture. The site has been equipped with a suite of radiation and
turbulent flux measurements since 1991 (Moore et al., 1996; Wofsy
et al,, 1993). The net radiation (Ry), ground heat flux (G), PAR, land
surface fluxes including sensible heat, water vapor and CO,, and
corresponding meteorological state variables (temperature, pressure,
humidity, wind etc.) in 30-minute temporal resolution are used for
parameterization and for validation. Daily mean precipitation data are
also used to discuss the impact of rain on ET estimation.

2.1. EDVI and normalized EDVI

The optical depth at microwave wavelengths has a semi-empirical
linear relationship with vegetation water content (VWC) and varies
systematically with both wavelength and canopy structure (Jackson
& Schmugge, 1991). The microwave emissivity difference between
two wavelengths minimizes the influence of the soil emission under-
neath vegetation canopy and is sensitive to VWC and other vegetation
properties between two emission layers in different effective thick-

ness. Min and Lin (2006a) proposed a new vegetation index: micro-
wave emissivity difference vegetation index, based on the microwave
land surface emissivity difference between two wavelengths to
indicate VWC and other vegetation properties of the canopy. The
EDVI is defined as:

MLSEL® — MLSE}/

EDVI, =
"™ 0.5(MLSEY’ + MLSE})

M

where p represents a polarization at vertical or horizontal direction.
19 and 37 indicate 19.4 GHz and 37.0 GHz channels of microwave
measurements of SSM/I, respectively. This normalized emissivity
difference further minimizes its dependency on canopy skin tem-
perature (i.e. the thermodynamic temperature of leaf surface) and
thus substantially reduces its uncertainty when canopy skin tem-
perature retrievals are problematic under cloudy conditions.

Detailed retrieval algorithm and its application have been discussed
in Min and Lin (2006a,b). Here we briefly sketch the retrieval process of
EDVI for the SSM/I data from the Defense Meteorological Satellite
Program (DMSP) F13 and F14 satellites from 1999 to 2000 at the Harvard
Forest site. For all SSM/I wavelengths and polarizations, MLSE values are
estimated based on an atmospheric microwave radiative transfer
(MWRT) model (Lin & Minnis, 2000; Lin et al., 1998), which accurately
accounts for the atmospheric absorption and emission of gases and
clouds, especially the temperature and pressure dependences of these
radiative properties (Lin et al., 2001). Only non-precipitating cases were
analyzed to avoid the complexity of microwave scattering and the
dependence of observed radiances on precipitating hydrometeors. The
major inputs for the retrieval are effective land surface skin temperature,
column water vapor (CWV), cloud water amount, surface air tempera-
ture and pressure. The European Center for Medium-range Weather
Forecasts (ECMWEF) assimilation data is used to estimate CWV values.
Atmospheric optical depths inferred from total shortwave measure-
ments assuming 8 pm cloud droplet effective radius were converted to
cloud water amount. The vertical distributions of atmospheric tem-
perature, pressure and gas abundance were constructed based on
climatological profiles (McClathey et al., 1972) and interpolated to
conform to the surface measurements of temperature and pressure and
ECMWF CWV values. Since the coverage of forest at Harvard Forest
within the footprint of 19 GHz channels (69x43 km?, the largest of
SSM/1) is very high, the possible heterogeneity contribution of forest to
the emissivity is minimal. As indicated by Min and Lin (2006a), the
vertical component of the EDVI has a higher correlation with the
evapotranspiration than the horizontal component. We use the vertical
component of EDVI in this study.

Further as outlined in Min and Lin (2006b), we define a normal-
ized EDVIy to quantify the leaf development stage as:

EDVI — EDVI°™¢
EDVI[™3X — EDV]onset 2)

where EDVI°™®" and EDVI™®* are EDVI at the spring onset and the
maximum EDVI during the growing season, respectively. The NEDVI is
the relative change of EDVI from its spring onset value during a
growing season and represents well the leaf growing stage during the
growing season (Min & Lin, 2006b).

Fig. 1 shows EDVI retrievals from SSM/I on board FM13 and FM14
satellites under both clear sky conditions and cloudy conditions. For
certain periods, by combining two satellite overpasses, we are able to
get a high temporal resolution of EDVI, up to 4 values per day at four
local times of around 5am, 9am, 4pm and 8pm. Such daily multiple
observations provide a possibility to monitor diurnal variation of
vegetation states and associated ET. Certainly, the temporal resolution
can be further improved when retrievals in rain conditions are avail-
able, and by combining other multiple-channel microwave sensors
such as TRMM Microwave Imager (TMI) and Advanced Microwave
Scanning Radiometer-EOS (AMSR-E).

NEDVI =
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Fig. 1. Time series of EDVI in high temporal resolution and the daily sample numbers from 1999 to 2000.

EDVI is influenced by land surface properties including properties of
vegetation, soil, and snow. Based on studies of Min and Lin (2006a,b),
EDVI during the growing season is closely related to the vegetation
properties: such as leaf development stages, vegetation water content,
etc. During the winter or other seasons, however, EDVI is sensitive to
the snow pack and soil conditions. In this study, we only focus on
retrievals during growing seasons. The variations of EDVI during a
growing season can be divided into two components. The first is a
“slow” variation that is represented by the normalized EDVI. Min and Lin
(2006b) demonstrated that the normalized EDVI is a good indicator of
vegetation development states. We use this slow variation component
to parameterize the minimal canopy resistance. The second is a “quick”
variation component, which represents the day-to-day variations
during the growing season. We consider that such variation is mainly
contributed by the stress of environmental factors. Although “pre-
cipitating” cases are excluded, the intercepted water on the leaf surface
from rain events can be incorrectly regarded as vegetation water,
resulting in overestimates of EDVI and consequently ET.

2.2. Retrieval algorithm of ET

The ET processes depend upon the availability of both water within
the soil and canopy and energy to change the water state along with
forest-atmosphere dynamics. The net energy exchange is a function of
environmental factors such as incoming radiation, which shows large
diurnal changes responding to variations in the solar zenith angle
and cloud coverage. To understand the linkage of ET fluxes to surface
properties, some studies have used the evaporation fraction (EF) as an
index for ET (Jiang & Islam, 2003; Nishida et al., 2003; Shuttleworth
et al.,, 1989):

EF=ET/(Ry — G) 3)

where Ry and G are the net radiation and the ground heat flux,
respectively. Since EF is nearly constant during daylight hours (Crago,
1996; Shuttleworth et al., 1989), it can be used for scaling in-
stantaneous satellite observations to longer time periods (daily or
daytime). Moreover, EF is directly related to the surface energy par-
tition or Bowen Ratio (BR) by EF=1/(1+ BR).

In reality, ET of forest ecosystem is composed of transpiration of
vegetation and evaporation from bare soil and intercepted precipita-
tion. Since the coverage of forest at Harvard Forest within the footprint
of 19 GHz channels (69x43 km?, the largest of SSM/I) is very high,
and EDVI is not retrieved under rainy conditions, we simply ignored
the latter two terms in the current study. However, the possible errors
or uncertainties introduced by these effects will be discussed later.
The linkage between vegetation EF and the canopy and aerodynamic
resistance can be described as (Nishida et al., 2003):

aA

FF=————
A+ vy +rc/1y)

(4)

a is the Priestley-Taylor's parameter ranging from 1.1 to 1.4 (Monteith,
1995; Priestley & Taylor, 1972). A is the derivative of the saturated vapor
pressure against temperature (Pa/K). vy is the psychometric constant
(Pa/K). r, is aerodynamic resistance (s/m) determined by wind speed,
while r. is the vegetation canopy resistance. To determine those
parameters we need to know not only vegetation states but also the
corresponding meteorology parameters including temperature, pres-
sure, humidity and wind in boundary layer. Directly obtaining some of
those parameters from satellite remote sensing is still challenging, but
steady advances have been made recently (Hashimoto et al., 2008;
Nishida et al., 2003; Njoku & Li, 1999). Temperature, pressure, humidity
and wind in boundary layer, except r, at least, can be readily obtained
from re-analysis with adequate accuracy. As a non-operation algorithm
and for illustrating retrieval capability, we simply use the in-situ
measurements from the meteorology station at the site.

In Eq. (4), the most important unknown parameter is the vege-
tation canopy resistance r., which is a function of vegetation and
environmental states. In general, the canopy resistance consists of two
parts: the cuticle resistance and the stomatal resistance. Based on the
classical Javis-type equation, we have:

1 _ h(TahL(PARIS(VPD)fy(#)f5(CO,) 1

Te Temin Teuticle

()

The stomatal resistance is expressed as a product of a minimal
resistance, r'emin, and the stress functions (f; to fs) associated with
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Fig. 2. Time series of normalized EDVI (solid circles) and canopy resistance (opened
circles) in Harvard Forest during the growing seasons of 1999 and 2000.

environmental states, such as air temperature, T,, photosynthetic
active radiation PAR, water vapor pressure deficit VPD, water potential
{5, and ambient carbon dioxide concentration CO,. We set the cuticles
resistance, reicle, to be 10° sm™ . In this study, however, we directly
connect some of these parameters with our retrieved EDVI, as EDVI
represents vegetation states.

The minimal canopy resistance remin, a resistance without any
environmental stress, is largely determined by the vegetation states.
The more the leaf developed in the canopy the smaller the canopy
resistance would be. As demonstrated by Min and Lin (2006b), the
EDVI is sensitive to leaf development through vegetation water
content of the crown layer of the forest canopy, and the leaf growing
stage can be monitored accurately by the normalized EDVI (NEDVI).
Fig. 2 shows NEDVI for the growing seasons of 1999 and 2000 and the
corresponding canopy resistance that is derived from in situ measured
latent heat flux measurements and associated meteorology. After the
spring onset in both 1999 and 2000, NEDVI increased quasi-linearly in
the first 20 days accompanied by leaf emergence and reached its
maximum a month later. In the meantime, the smoothed canopy
resistance decreased accordingly. During the steady state of the
growing season, the canopy resistance stayed in small values with a
minimum value of about 17 sm™ !, while the NEDVI varied closely to its
maximum. As the ripening process proceeds with leave drying up and
consequently falling, NEDVI decreased gradually to a small value
before LAI to decrease (Min & Lin, 2006b). Changes in VWC and LAI
result in the canopy resistance to increase to a large value. It is clear
that the canopy resistance is generally anti-correlated with NEDVI,
which represents the vegetation development states. The canopy
resistance is controlled not only by the minimal canopy resistance,
but also by the stress of many environmental factors. NEDVI indicates
the vegetation water content in the canopy, which is more important
than the leaf amount for photosynthesis and vegetation-atmosphere
interaction processes. Therefore, the minimal canopy resistance is
assumed to be:

N
Temin = Temino /- EDVI (6)
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where T'emino iS the baseline of the minimum canopy resistance,
representing vegetation characteristic at the site. From the canopy
resistance derived from the measurements at Harvard forest, we set
T'emino t0 be 17 sm™ L. Eq. (6) basically assumes that the variation of the
minimum canopy resistance during growing season is dependent on
the vegetation state parameter NEDVI. It is worth noting that the
traditional optical vegetation index with sparse temporal resolution
and possible saturation problem cannot accurately capture the tran-
sitions of vegetation states during growing seasons. Such that most
NDVI based algorithms do not account for the variation of vegetation
states during the growing season.

Environmental stresses further regulate the canopy resistance. Since
air temperature and PAR are readily obtained from satellite observation,
we directly account for both variables and adopted the function forms of
f(Ta) and f(PAR) from Jarvis (1976) and Kosugi (1996):

Tx—TO
(Ta) _ I, -T.\(L—T, TO—Tn (7)
! TO - Tn Tx - Ta
PAR
L(PAR) = paR 1 A

where parameters T, To and Ty are minimum, optimal and maximum
temperatures for stomatal activity. Parameter A is related to efficiency
of photon absorption and set to be 152 (Nishida et al., 2003).

Direct measure of VPD, water potential, {s, and ambient carbon
dioxide concentration of functions fs, f4, and fs, respectively, from
satellites is very challenging. Some remote sensing algorithms of ET
simply set the functions of f3, f4, and f5 to be 1 (Nishida et al., 2003). As
discussed previously, the slow variation of EDVI represents changes in
vegetation state, determined by seasonal dynamics of vegetation at
the geo-location. There are still significant day-to-day and even
diurnal variations of EDVI, shown in Fig. 1. Within 24 h, particularly in
the steady state of a growing season, changes in the leaf development/
amount are very small and the fast variation of EDVI represents
canopy response to the changes of environmental conditions, such as
VPD, water potential and carbon dioxide concentration. Increase of
EDVI in daily or diurnal scales indicates increase of VWC, which could
be due to water recharge through vegetation roots and/or intercept of
water on leaves. Water recharge could result in lower water potential,
and intercept water will result in lower VPD. As shown in Fig. 3a, there
is a fair correlation between the day-to-day variations of EDVI, dEDVI,
and the changes of VPD, dVPD, with correlation coefficient of 0.47.
Those non-raining samples (39 pairs) used here were at least two
consecutive days with valid observations. The scattering of the dVPD-
dEDVI relationship indicates the fact that there are more factors other
than VPD can impact the value of EDVI. More interestingly, shown in
Fig. 3b, the ratio of two consequent samples of combined f345
(removing the impacts of f;(T,) and f, (PAR)) is correlated with dEDVI
(R=0.56, 69 s maples), indicating better representative of EDVI for
the combination of the rest three stress functions. Hence, we can
parameterize Fs 45 based on the difference between the EDVI and the
baseline EDVI® (smoothed EDVI), as

F45 = f3(VPD)f,(¥)fs(CO,) = [1.186 —105.755 (EDVI - EDVIS)] o
(8)
Egs. (3)-(8) represent our basic retrieval algorithms of EF and ET.

Parameters listed in those equations are either directly obtainable
from satellite remote sensing or from re-analysis.

3. Results
In the following, we will use EDVI combined with some surface

measurements to demonstrate and validate our retrievals. FM13 and
FM14 satellites passed over Harvard forest site at around 9 am and
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4 pm local times during daytime. We retrieve both EF and ET at and afternoon overpasses. Fig. 4 shows direct comparison between
corresponding morning and afternoon overpasses and also estimate observed and estimated ET and EF for both growing seasons of 1999
daily average EF and ET by combined retrievals from both morning and 2000. The retrieved EF captures the seasonal variation very well
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in the transient periods and during the steady state of the growing
season. It implies that the normalized EDVI could represent the
seasonality of vegetation state, providing an accurate assessment of
minimum canopy resistance in the entire growing season. With
observed available energy, it is easy to derive ET from retrieved EF,
shown in Fig. 4c. ET has larger variation due to additional variability of
available energy. Estimated ET agrees with observed ET, even at short
time scales. With high temporal resolution of retrieved EDVI, we are
able to derive temporal variation of EF and ET from satellite remote
sensing caused by synoptic scale weather systems, which is important
for understanding vegetation-atmosphere interaction. Such informa-
tion is not readily obtained from traditional retrievals based on 8-day
or 16-day composited optical vegetation indexes.
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Most differences between estimated and observed EF are smaller
than 0.2, shown in Fig. 4b. Some large negative differences do occur
and are strongly related to precipitation. In this study, we did not
separate evaporation from transpiration. Although we excluded days
with rainfall that can be directly detected by satellite, precipitation
which occurred before and after satellite overpasses may enhance
water availability through soil and leaf interception. Evaporation of
intercepted water would enhance EF and ET. Without considering
evaporation process the current algorithm will result in a negative bias
in estimated EF and ET due to the influence of precipitation. Further,
most differences between estimated ET and observed ET are smaller
than 100 Wm~2 and some larger differences are mainly associated
with precipitation.
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Fig. 5. Estimated and observed ET at daily mean (9am-4pm), 9am and 4pm and the distribution of the relative error. The three straight lines in each plot are the 1:1 line and that 4-1
standard deviation of observation, respectively. Solid circles are those samples severely contaminated by precipitation. New statistics of ET estimation excluding those samples are

filled in parenthesis.
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Statistically, as shown in Fig. 5, the correlation coefficient (R?)
between estimated and observed ETs is 0.83 with a mean bias of
3.31 Wm™ 2 and a standard deviation of 79.63 Wm™ 2. If we excluded
the data that may be influenced by precipitation, the standard deviation
is further reduced to 68.90 Wm™ 2 with a better correlation coefficient
(R?) of 0.85. We should emphasize that observational uncertainties
are considerable. The footprint of tower flux measurements is only a
small fraction of footprints of SSM/I sensors. Scale-inconsistencies have
certain effects on the evaluation and comparison of the satellite and
surface data. Uncertainties associated with ground observations of ET
fluxes are also large. Small errors in meteorological variable measure-
ments may produce non-negligible errors in these fluxes (i.e. Section C
in Glenn et al., 2007 and related literatures therein). Overall, the mean
difference between estimated and observed ET is ~30%, which is within
the uncertainty of current ground based ET measurements (20%-30%,
Glenn et al., 2007). These statistical characteristics indicate that this
retrieval algorithm is comparable or better than most existing retrieval
algorithms, particularly for retrievals under both clear-sky and cloudy
conditions (Glenn et al., 2007).

Fig. 5 also shows the comparison of observed and estimated EF
and ET at satellite overpass times of 9am and 4pm. For the morning
overpass retrievals, the estimated ETs have a mean error of 2.57 Wm ™2
and a standard deviation of 77.70 Wm™ 2 with a correlation coefficient
(R?) of 0.78. For the afternoon overpass retrievals, the estimated
ETs have a mean error of —0.55 Wm™2 and a standard deviation of
57.09 Wm™ 2 with a correlation coefficient (R?) of 0.80. There are even
better accuracies for both morning and afternoon overpasses, if the
precipitation contaminated data are removed.

Precipitation not only impacts on EDVI retrievals due to hydro-
meteor scattering but also introduces a large error of ET estimation
after precipitation events due to uncertainties of intercepted water
processes. Retrievals of ET with weekly accumulated precipitation
larger than ~20 mm have remarkable negative mean errors of
—151.37 w/m? and —125.88 w/m? at 9am and 4pm, respectively.
These errors are 2-3 times larger than the associated overall standard
deviations (77.70 w/m? at 9am and 57.09 w/m? at 4pm). It illustrates
the significant impacts of precipitation on ET estimation.

Overall good agreement between estimated and observed ET for
both morning and afternoon satellite overpasses demonstrates a great
opportunity to monitor diurnal variation of vegetation state, EF, and
ET using daily multiple-overpass measurements of satellites. For
example, as shown in Fig. 1, by combining SSM/I measurements from
FM13 and FM14 satellites, we are able to get up to 4 measurements
daily. To demonstrate this capability, we chose all days that had three
or four satellite overpasses to retrieve EDVI and estimate ET (about 30
samples with three overpasses and 3 samples with four overpasses).
To illustrate the diurnal cycle of ET, we averaged observed ET for those
days, shown in Fig. 6. EDVI was high (0.0171) at dawn (~5am), due
to high VWC through water recharge process at night. The EDVI
deceased throughout the day (0.0160 at 9am and 0.0157 at 4pm) as
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Fig. 6. Diurnal cycle of EDVI, estimated ET (Wm™2) and the in-situ observed ET (Wm™2).

the evapotranspiration process extracted water from vegetation. Late
into the night, with diminishing of evapotranspiration process, water
recharge process uptakes water from root to the leave and branches,
resulting in a high EDVI value. Applying the diurnal cycle of EDVI, the
estimated ET increases from 9.43 +8.54 Wm™ 2 at 5am to 232.23 +
114.21 Wm™ 2 at 9am, and then decreases to 138.57 4- 62.89 Wm ™ 2 at
4pm and to 0.00 at 8pm due to changes of available energy at that
time. The diurnal cycle of estimated ET agreed well with averaged
measurements of ET. Although there are only four samples of EDVI and
ET per day, those retrievals reasonably reflect the diurnal cycle of
vegetation properties and ET. Combining with other multiple-channel
microwave sensors, such as TMI and AMSR-E, it will certainly enhance
observational frequencies and better remotely sense the diurnal cycle
of vegetation states and ET.

4. Conclusion

We have developed a novel technique that links vegetation prop-
erties and ET fluxes with an “emissivity difference vegetation index”,
defined as the microwave land surface emissivity (MLSE) differences
between two wavelengths (Min and Lin, 2006a,b). These EDVI values
are derived from a combination of satellite microwave (MW)
measurements with visible and infrared observations. Taking advan-
tage of high temporal resolution of EDVI, we developed an algorithm
to estimate EF and ET from the first principle of surface energy balance
model. The slow variation of EDVI, represented by the normalized
EDVI, provides an accurate measure of vegetation state during the
growing season, and thus is used to scale the minimal canopy resis-
tance. As EDVI is directly linked to VWG, the fast changes of EDVI
represents canopy response to the changes of environmental condi-
tions, such as VPD, water potential (and carbon dioxide concentra-
tion). It allows us to parameterize the combined stress functions of
environmental factors of VPD, water potential, and carbon dioxide
concentration. Utilizing both slow and fast variations of retrieved
EDVI, we are able to accurately estimate canopy resistance, and thus
EF.

From direct comparison with the in-situ observation of EF at the
Harvard Forest site, the estimated EF from our retrieval algorithm
captures not only the seasonal variation in the transient periods and
during the steady state of the growing season but also temporal
variation of EF caused by synoptic and diurnal weather changes. Such
information is not readily obtained from traditional retrievals based
on 8-day or 16-day composited optical vegetation indexes. With ob-
served available energy, it is easy to derive ET from retrieved EF.
Validation at the site shows that the correlation coefficient (R?)
between estimated and observed ETs is 0.83 with a mean bias of
3.31 Wm™? and a standard deviation of 79.63 Wm™?2. The overall
mean difference of our ET retrievals with in-situ measurements is
~30%, which is within the uncertainty of current ground based ET
measurements and comparable to most existing retrieval algorithms
(Glenn et al., 2007). It is worth noting that the above statistics include
retrievals under both clear-sky and cloudy conditions. The results of
this study were obtained over a dense forest cover limited to the
growing season period. We speculate that our method is applicable
under all-weather conditions and extends current satellite remote
sensing capability of vegetation properties and ET fluxes from day-
time, clear-sky conditions to day and night times and from inter-
mediate LAI to all range of vegetation states. Extensive application of
this method to different vegetation regimes is under way. Although
the present version of this algorithm is running on an off-line mode,
our aim is to develop an operational algorithm in estimating ET from
a combination of satellite microwave measurements with visible and
infrared observations. Currently, our physically-based EF retrieval al-
gorithm has three basic modules: meteorological conditions, radia-
tion, and EF. All key inputs for the three modules of this algorithm
can be replaced by satellite remote sensing and reanalysis data. For
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examples, the surface net radiation income (Ry) and the photosyn-
thetic active radiation can be retrieved from the combined observa-
tions of Clouds and Earth's Radiation Energy System and the Moderate
Resolution Imaging Spectroradiometer. The upgraded operational
technique for EF and ET estimations will be a unique tool in studying
the atmospheric water and energy cycle and vegetation-atmosphere
interactions at diurnal, synoptic and climate scales.
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